Velocity and acceleration
rate of veocity

$$
V=\frac{\Delta s}{\Delta t}
$$

平均／瞬时速度
（instaneous velocity

（8）displacement．

displacement $=$ area maunder $v+$ grophtu．

Acceleration

$$
a=\frac{\Delta v}{\Delta t}
$$

def．rate of change of momentum

$$
\begin{aligned}
& \text { K三式 } \\
& v=u+a t \\
& s=u t+\frac{1}{2} a t^{2} \\
& v^{2}=u^{2}+2 a s
\end{aligned}
$$

Motion graphs

- Displacement-time graph gradient: velocity
- Velocity -time graph gradient : acceleration. area: displacement.
- Acceleration -time graph. area: velocity.

Adding force

- Vector diagram
tail to tail
tip to tip
resultant force 合力
- Free-body force diagram

Moments
－Calculate moment $(N m)=$ force x moment am

$$
\stackrel{\rightharpoonup}{M}=F x
$$

－Principle of moments If sum of clockwise moments＝sum of anticlockwise moments then，the body is in equilibrium 2 equilibrium the resultant force is 0 in the object
－Centre of gravity def．a point at which all the weight force appears to act on
不规则物体找重心

Newton＇s law of motion
－NI
every object continues its state of rest or uniform motion in a straight line unless made to change by the total force acting on it

$$
\begin{aligned}
& N_{2} \\
& F=m a
\end{aligned}
$$

加速度与物体质量呈反比。
－Nu
When an object A causes a force on another object B ， then object B causes an equal force in the opposite direction to act upon object A

$$
\left\{\begin{array}{l}
\text { 相同点 }\left\{\begin{array}{l}
\text { magnitude } \\
\text { time } \\
\text { type }
\end{array}\right. \\
\text { 不同点 }\left\{\begin{array}{l}
\text { opposite direction } \\
\text { different bodies }
\end{array}\right.
\end{array}\right.
$$

